Search results for "Data compaction"
showing 1 items of 1 documents
Lossless coding of hyperspectral images with principal polynomial analysis
2014
The transform in image coding aims to remove redundancy among data coefficients so that they can be independently coded, and to capture most of the image information in few coefficients. While the second goal ensures that discarding coefficients will not lead to large errors, the first goal ensures that simple (point-wise) coding schemes can be applied to the retained coefficients with optimal results. Principal Component Analysis (PCA) provides the best independence and data compaction for Gaussian sources. Yet, non-linear generalizations of PCA may provide better performance for more realistic non-Gaussian sources. Principal Polynomial Analysis (PPA) generalizes PCA by removing the non-li…